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Outline
Explanation of the title : 

Gene interaction studies. 
Why inverse correlation matrix. 
Bayesian Analysis and need for a sampling scheme. 

Previous literature 
Meng et al
Wong et al
Limitations and challenges. 

Proposed Algorithm
Reversible Jump Markov Chain.
Cholesky Decomposition of inverse correlation. 
Inverse correlation selection prior. 
Sampling Algorithm. 

Application to Gene interaction experiment. 
Androgen pathway 
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Gene Interaction/pathway studies :
Evolution of the Androgen Receptor Pathway during Progression of Prostate 

Cancer. Peter J.M. Hendriksen et al  , Cancer Res 2006; 66: (10). 
May 15, 2006
Involvement of Androgen receptor pathway in initiation and progression of 
prostate cancer. 
200 genes that are androgen responsive in prostate cancer cell lines and/or 
xenograft.  
Hierarchical clustering, up-regulation and down-regulation in a gene-wise 
analysis was determined based on ratio of expression between cancer cells and 
normal cells above 1.62 (2 log 0.7). 

Conclusion
Specific sets of androgen receptor pathway genes are down-regulated during 
the progression from well-differentiated prostate carcinoma to high grade  
prostate carcinoma.
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Pathway studies cont.
Genome-wide expression profiling reveals transcriptomic variation and 

perturbed gene networks in androgen-dependent and androgen-
independent prostate cancer cells :  A.P. Singh et al. / Cancer Letters 259 
(2008) 28–38
35 cancer cases, hybridized to the HGU133 plus2 gene chips (Affymetrix)
Paired t-test between benign and prostate cancer cells was used to determine 
significant difference. 
Pathway prediction analysis using ‘Ingenuity Pathway Analysis’. 

Conclusion
Multiple genes were identified as differentially expressed including many 
tumor suppressor genes. 
Pathway prediction analysis identified several signaling pathways to be 
perturbed. 
“The Functional Analysis of a network identified the biological functions and/or diseases that were 
most significant to the molecules in the network. The network molecules associated with biological 
functions and/or diseases in Ingenuity’s Knowledge Base were considered for the analysis. Right-
tailed Fisher’s exact test was used to calculate a p-value determining the probability that each 
biological function and/or disease assigned to that network is due to chance alone.” –Pathway Assist 
website.



Towards a more comprehensive 
model : 

Need to account for dependence among 
the genes in order to make conclusion 
about pathways. 
The model will be high dimensional as 
gene interaction is modeled through their 
covariance matrix. 
Bayesian approach would need a prior on 
the covariance parameters and posterior 
sampling. 
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Previous work on covariance selection 
models

1. Barnard, McCullogh and Meng (2000)

Barnard et al. (2000) modeled the covariance matrix by decomposing into 
the variance components and the correlation matrix, R.

Prior on R are developed so that there is shrinkage towards 0 for each 
entry.

Covariance and correlation matrices play an important role in statistical 
inference. Modeling covariance and correlation matrices is a difficult 
task due to the non-negative definiteness constraint placed on these 
matrices.

Drawbacks:
Elements of R are updated one at a time. 
To preserve non-negative definiteness, each entry is constrained to lie in an 

interval. 
This interval has to be computed at each update resulting in a slow updating 

algorithm.
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Wong, Carter and Kohn (2003) developed statistical inference for the 
inverse covariance matrix, W, in a graphical network.
Prior elicited in terms of zero and non-zero entries of W. 
Again, non-negative definiteness of W constrain the entries of W to belong 
to an interval.
Elements of W are updated one at a time. The updating algorithm is slow to 
converge.

Previous work on covariance selection models 
(cont.)

• Pitt, Chan and Kohn (2006) focuses on inference on the inverse correlation 
matrix, W, such that W-1 = R.
• More complicated since diagonal entries of W-1 must be unity. 
• Their updating algorithm is also slow to converge.

2. Wong, Carter and Kohn (2003)

3. Pitt, Chan and Kohn (2006)
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Why inverse correlation matrix :
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Bayesian Inference :
Likelihood : Sampling distribution of data φ(X|R).
Prior for R : π(R). 
Posterior : 
Posterior integration problem : Almost all inference 
requires computation of the integral : 

)|()()|( RXRXRp φπ∝

dRXRpRf )|()(∫
Typical problems : 

Analytically intractable integral.
f an p are generally nice function.
R is very high dimensional. 
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Posterior MCMC

Monte Carlo integration : 

How to generate

Construct a Markov chain with the stationary distribution  

and generate
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Model selection problem :
For the graphical model problem on p nodes, the 
correlation matrix has p(p-1)/2 parameters. 
Natural networks (gene pathways) are often sparse. 

iJSuppose       denote the set of all correlation matrices subject to a 
specific configuration of the inverse correlation matrix consisting of 
zeros and nonzero values.  Our models are : 

MiJJRM iii ,...,1, possible allfor : =∈

Models are of different dimension. 
Parameter space is I≈R, I is the model indicator, R is the 
correlation matrix subject to configuration Ji.
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Goal :

To develop a sampling scheme that is able 
to  :

Sample within the restricted domain of R or W 
matrix. 
Update multiple entries of the matrix at a time. 
Jump between all sparsity configurations of 
W. 
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Reversible Jump MCMC :
Green (1995) and Green and Richardson (1997) developed the 
RJMCMC approach for Bayesian inference.
Let x and y be elements of the model space (with possibly 
differing dimensions).
The RJMCMC approach proposes a move, say m, with 
probability rm.
The move m takes x to y via the proposal distribution qm(x, y).
Time reversibility requires accepting y with probability
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RJMCMC continued :
Moves m and m0 must be reversible: qm(x, y) and 
qm’(y, x) must have the same support.
If y represents the higher dimensional model, we 
can first sample u from a proposal q0(x, u) then 
obtain y as a one-to-one function of (x, u).
In that case,
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R-1=W=LL’ : Cholesky decomposition.
Denote : 

Then : 
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This allows us to treat the lij s for i > j as  free (i.e., 
unconstrained) parameters with each lij  taking values on R.

The elements of lij involve lkk’ s for indices k > k’ > j only.

Cholesky decomposition of Inverse Correlation matrix
(Mukhopadhyay, Dass (2009) Tech report MSU.)
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Let J denote a configuration of zeros and nonzeros in the W 
matrix.  All the models are indexed by it’s configuration. 

. of elements zero-non  the toingcorrespond columns
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Inverse correlation selection prior
(Mukhopadhyay, Dass (2009) Tech report MSU.) :
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Prior cont.
Prior on R is proper and the normalizing constant 
can be computed in a close form : 

. ofcolumn th -in  entries nonzero of no.  where

)2/(
2

2
1,

2
)|()(

2/1

1

Ljn

nn
nn

etaΒdrJRgJV

j

jj

n
jj

p

j
J

j

=

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== ∏∫

−

=

π



Modeling Inverse Correlation, 
Mukhopadhyay N 18

Reversible Jump Sampling Algorithm
Remove Zero: 
In this updating step, (J,W) Ø(J*,W*) by 
increasing the number of nonzero entries j-th 
column of L. 
Add Zero: 
In this updating step, (J,W) Ø(J*,W*) by 
increasing the number of zero entries j-th column 
of L.
Zero Unchanged: 
In this updating step, (J,W) Ø(J*,W*) by updating 
the nonzero entries j-th column of L without 
changing the zero pattern.
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Algorithm :
Update j-th column of L at a time for j=(p-1) to 1. 
Randomly choose one of the acceptable move 
(Add zero, remove zero, or zero unchanged). 
Update the locations of zero and propose new 
values for nonzero locations based on a proposal 
distribution q. 
Accept the move with probability 
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Application : Androgen pathway interaction

Gene expression omnibus : GSE4084
12 samples on 10 genes.
Genes are observed to be over expressed in cancer 
cells according to A.P. Singh et al.  Cancer Letters 
259 (2008) 
Marginal analysis for each gene is reported. 
Combined analysis of all genes will require ~100 
covariance parameters.

Peter J.M. Hendriksen et al  , Cancer Res 2006
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Kegg Pathway : Androgen
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10,000 simulated samples of L :
Fitted density of 10000 nonzero 

values for each location.
Actual distribution is a mixture of 

this distribution with a point mass 
at zero.  

Highlighted locations indicate 
large point mass on zero. 
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10,000 simulated samples of L :
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10,000 simulated samples of L :
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10,000 simulated samples of L :
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10,000 simulated samples of W :
Sparsity of L is transferred to W only 
for the first column. 
Other columns may not be sparse, 

but 
the generating probability is often 

lower dimensional. 
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10,000 simulated samples of R:

Diagonals are exactly 1.
Sparsity is not similar, but the     

underlying probability is lower 
dimensional. 



Simulation with a known inverse correlation : 

Modeling Inverse Correlation, 
Mukhopadhyay N 28

1

~ (0, ) ,
1 0 0 0 0 1 0 0 0 0
0 1 0.28 0 0 0 1.09 0.31 0 0

,0 0.28 1 0.2 0 0 0.31 1.13 0.2 0
0 0.06 0.2 1 0 0 0 0.2 1.04 0
0 0 0 0 1 0 0 0 0 1

X N R where

R W R−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =− −
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 0 0 0 0
0 1.04 0 0 0
0 0.3 1.02 0 0
0 0 0.2 1 0
0 0 0 0 1

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Correlation and inverse 
correlation 
has a band matrix structure. 
Mostly sparse. 
Simulation has 200 

observations, 
20,000 MCMC samples. 



20,000 simulated samples of R
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20,000 MCMC samples of W:
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20,000 MCMC Samples of L :
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Conclusion, Future directions :
The algorithm makes good use of the sparse 
structure of the inverse correlation matrix.
Easily generalized to much higher dimension, 
computation time would be higher depending on 
sparsity of the problem. 
Improves on updating scheme of updating one 
element at a time. 
We intend to apply this to graphical models 
without Gaussian structure by means of using 
copula to model the dependence. 
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