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Outline

m Explanation of the title :
Gene interaction studies.
Why inverse correlation matrix.
Bayesian Analysis and need for a sampling scheme.

m Previous literature
Meng et al
Wong et al
Limitations and challenges.

m Proposed Algorithm
Reversible Jump Markov Chain.
Cholesky Decomposition of inverse correlation.
Inverse correlation selection prior.
Sampling Algorithm.

m Application to Gene interaction experiment.
Androgen pathway
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Gene Interaction/pathway studies :

Evolution of the Androgen Receptor Pathway during Progression of Prostate
Cancer. Peter J.M. Hendriksen et al , Cancer Res 2006; 66: (10).
May 15, 2006

» Involvement of Androgen receptor pathway in initiation and progression of
prostate cancer.

» 200 genes that are androgen responsive in prostate cancer cell lines and/or
xenograft.

» Hierarchical clustering, up-regulation and down-regulation in a gene-wise
analysis was determined based on ratio of expression between cancer cells and
normal cells above 1.62 (2 log 0.7).

Conclusion

» Specific sets of androgen receptor pathway genes are down-regulated during
the progression from well-differentiated prostate carcinoma to high grade
prostate carcinoma.
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Pathway studies cont.

Genome-wide expression profiling reveals transcriptomic variation and
perturbed gene networks in androgen-dependent and androgen-
Independent prostate cancer cells : A.P. Singh et al. / Cancer Letters 259

(2008) 28-38
35 cancer cases, hybridized to the HGU133 plus2 gene chips (Affymetrix)

Paired t-test between benign and prostate cancer cells was used to determine
significant difference.

» Pathway prediction analysis using ‘Ingenuity Pathway Analysis’.

Conclusion

» Multiple genes were identified as differentially expressed including many
tumor suppressor genes.

» Pathway prediction analysis identified several signaling pathways to be
perturbed.

“The Functional Analysis of a network identified the biological functions and/or diseases that were
most significant to the molecules in the network. The network molecules associated with biological
functions and/or diseases in Ingenuity’s Knowledge Base were considered for the analysis. Right-
tailed Fisher’s exact test was used to calculate a p-value determining the probability that each
biological function and/or disease assigned to that network is due to chance alone.” —Pathway Assist
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Towards a more comprehensive
model

m Need to account for dependence among

the genes in order to make conclusion
about pathways.

m The model will be high dimensional as

gene interaction iIs modeled through their
covariance matrix.

m Bayesian approach would need a prior on
the covariance parameters and posterior
sampling.
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Previous work on covariance selection
models

Covariance and correlation matrices play an important role in statistical
iInference. Modeling covariance and correlation matrices is a difficult
task due to the non-negative definiteness constraint placed on these
matrices.

1. Barnard, McCullogh and Meng (2000)

»Barnard et al. (2000) modeled the covariance matrix by decomposing into
the variance components and the correlation matrix, R.

»Prior on R are developed so that there is shrinkage towards 0 for each
entry.

Drawbacks:

»Elements of R are updated one at a time.

»To preserve non-negative definiteness, each entry is constrained to lie in an
interval.

»This interval has to be computed at each update resulting in a slow updating
algorithm.
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Previous work on covariance selection models

(cont.)
2. Wongq, Carter and Kohn (2003)

m \Wong, Carter and Kohn (2003) developed statistical inference for the
inverse covariance matrix, W, in a graphical network.

m Prior elicited in terms of zero and non-zero entries of W.

m Again, non-negative definiteness of W constrain the entries of W to belong
to an interval.

m  Elements of W are updated one at a time. The updating algorithm is slow to
converge.

3. Pitt, Chan and Kohn (2006)

« Pitt, Chan and Kohn (2006) focuses on inference on the inverse correlation
matrix, W, such that W1 = R.

* More complicated since diagonal entries of W-1 must be unity.

« Their updating algorithm is also slow to converge.
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Why Inverse correlation matrix :

Let X =(X,, X,,..., X,)" denote a p-variater.v.in R” .

Density :¢,(x,,X,,..., X, | R) =

1,
2 de P R

R = ((r;)) : Symmetric p d Correlation matrix.

W = ((Wy )) — R_l
thenw, = 0 < X, and X, are conditionally independent
given therest of the X,s, k= {i, j}!.
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Bayesian Inference :
_ikelithood : Sampling distribution of data ¢(X|R).
Prior for R : z(R).
Posterior - p(R| X) o z(R)$(X | R)

Posterior integration problem : Almost all inference
requires computation of the integral :

| f(R)p(R| X)dR

Typical problems :

» Analytically intractable integral.
» fan p are generally nice function.
» R is very high dimensional.
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Posterior MCMC

m Monte Carlo integration :

[ F(R)P(RIX)dR = =3 f(R,) where R, =~ p(R|X)

m How to generate
R, ~ p(R|X)
= Construct a Markov chain with the stationary distribution

p(R1X) andgenerate R, ,i=12,..

Modeling Inverse Correlation,
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Model selection problem :

m For the graphical model problem on p nodes, the
correlation matrix has p(p-1)/2 parameters.

m Natural networks (gene pathways) are often sparse.

Suppose J ; denote the set of all correlation matrices subject to a
specific configuration of the inverse correlation matrix consisting of
zeros and nonzero values. Our models are :

M,: ReJ, forallpossibleJ, ,i=1...M

m Models are of different dimension.

m Parameter space is I®R, I is the model indicator, R is the
correlation matrix subject to configuration J..
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Goal :

m To develop a sampling scheme that is able

to
Sample within the restricted domain of R or W
matrix.
Update multiple entries of the matrix at a time.

Jump between all sparsity configurations of
W.

Modeling Inverse Correlation,
Mukhopadhyay N 12



"
Reversible Jump MCMC

m Green (1995) and Green and Richardson (1997) developed the
RIMCMC approach for Bayesian inference.

m Let x and y be elements of the model space (with possibly
differing dimensions).

m The RIMCMC approach proposes a move, say m, with
probability ..

m The move m takes x to y via the proposal distribution q,,,(X, Y).

m Time reversibility requires accepting y with probability

n(yldata) r, q (v, x)

w(x|data) r g (x,)

7 (x | data ) : posterior of x given data.

q (v.x) = probabilit y of moving from yto x.

Modeling Inverse Correlation,
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RIJMCMC continued :

m Moves m and m, must be reversible: q,,(x, y) and
q,.(Y, X) must have the same support.

m If y represents the higher dimensional model, we
can first sample u from a proposal g,(x, u) then
obtain y as a one-to-one function of (x, u).

m |n that case,

0, () = 4o () det(—2 )

o(x,u)

Modeling Inverse Correlation,
Mukhopadhyay N 14



" J
Cholesky decomposition of Inverse Correlation matrix
(Mukhopadhyay, Dass (2009) Tech report MSU.)

R1=W=LL"’: Cholesky decomposition.

Denote . [ ok x B
Wz*wjj w] and Lz*ljj 0
ow W * l; L,

Then :

2 -1
Zj—1+l(LL) [,

m This allows us to treat the /;s for i > j as free (i.e.,
unconstrained) parameters with each /; taking values on R.

m The elements of /; involve /;,.s for indices k > k’> j only.
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Inverse correlation selection prior
(Mukhopadhyay, Dass (2009) Tech report MSU.) :

Let J denote a configuration of zeros and nonzeros in the W
matrix. All the models are indexed by it's configuration.

Prior on R :

p-1
g(R|J)e [] (det( Ry, , )™
j=1

Where R, , ;Is the submatrix of R  with rows and

columns correspond ing to the non - zero elements of L.

o -1
ﬂO(JlN(J):h):(hj - and

H
ﬂo(N(J)=hIV/)=(h]w”(1—w)H” , and

7w, (v ) = Uniform (0,1)
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Prior cont.

m Prior on R Is proper and the normalizing constant
can be computed in a close form :

p-1 nj nj 272_nj/2
V(J)= R|J)dr, =\ | Beta| — 1+
()) = [ g(R|J)dr, [1Bete) 51+ T 12

where n; =no.of nonzeroentriesin j - th column of L.

Modeling Inverse Correlation,
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Reversible Jump Sampling Algorithm

m Remove Zero:
In this updating step, (J,W) —(J*,W*) by
Increasing the number of nonzero entries |-th
column of L.

m Add Zero:

In this updating step, (J,W) —(3*,W*) by
Increasing the number of zero entries |-th column
of L.

m Zero Unchanged:
In this updating step, (J,W) —(J*,W*) by updating
the nonzero entries j-th column of L without
changing the zero pattern.

Modeling Inverse Correlation,
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Algorithm :

m Update j-th column of L at a time for j=(p-1) to 1.

m Randomly choose one of the acceptable move
(Add zero, remove zero, or zero unchanged).

m Update the locations of zero and propose new
values for nonzero locations based on a proposal
distribution g.

m Accept the move with probability mir{l

ﬂ«J*,W*»D)qo(J*,J)}
()| D)go (. )

Modeling Inverse Correlation,
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Application : Androgen pathway interaction

Peter J.M. Hendriksen et al , Cancer Res 2006

m Gene expression omnibus : GSE4084
m 12 samples on 10 genes.

m Genes are observed to be over expressed in cancer
cells according to A.P. Singh et al. Cancer Letters
259 (2008)

m Marginal analysis for each gene is reported.

m Combined analysis of all genes will require ~100
covariance parameters.

Modeling Inverse Correlation,
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Kegg Pathway : Androgen
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10,000 simulated samples of L :

| > Fitted density of 10000 nonzero
d My values for each location.

»Actual distribution is a mixture of
this distribution with a point mass
at zero.

»Highlighted locations indicate
large point mass on zero.
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10,000 simulated samples of L :
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10,000 simulated samples of L
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10,000 simulated samples of L :
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10,000 simulated samples of W :

P » Sparsity of L is transferred to W only
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10,000 simulated samples of R:
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Simulation with a known inverse correlation :

X ~ N(O,R) where,
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20,000 simulated samples of R
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20,000 MCMC samples of W
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20,000 MCMC Samples of L :
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Conclusion, Future directions :

m The algorithm makes good use of the sparse
structure of the inverse correlation matrix.

m Easily generalized to much higher dimension,
computation time would be higher depending on
sparsity of the problem.

m Improves on updating scheme of updating one
element at a time.

m \We intend to apply this to graphical models
without Gaussian structure by means of using
copula to model the dependence.

Modeling Inverse Correlation,
Mukhopadhyay N 32



	Efficient Sampling of Inverse Correlation Matrices and its Applications in Bayesian Modeling of Gene Interaction in Early Phase Genomic Experiments
	Outline
	Gene Interaction/pathway studies : 
	Pathway studies cont. 
	Towards a more comprehensive model : 
	Slide Number 6
	Slide Number 7
	Why inverse correlation matrix :
	Bayesian Inference :
	Posterior MCMC
	Model selection problem : 
	Goal : 
	Reversible Jump MCMC : 
	RJMCMC continued : 
	Slide Number 15
	Slide Number 16
	Prior cont. 
	Reversible Jump Sampling Algorithm 
	Algorithm : 
	Application : Androgen pathway interaction 
	Kegg Pathway : Androgen 
	10,000 simulated samples of L :
	Slide Number 23
	10,000 simulated samples of L :
	10,000 simulated samples of L :
	10,000 simulated samples of W :
	10,000 simulated samples of R:
	Simulation with a known inverse correlation : 
	20,000 simulated samples of R
	20,000 MCMC samples of W:
	20,000 MCMC Samples of L : 
	Conclusion, Future directions :

